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Abstract

With the support of the comprehensive review in Liu et al. [14], we consider dependency distance minimization to be firmly 
established as a quantitative property of syntactic trees. In this comment, we consider future empirical and theoretical directions 
for this concept, including a recent information-theoretic reinterpretation of dependency locality effects as proposed by Futrell and 
Levy [4].
© 2017 Published by Elsevier B.V.

Multiple independent lines of work from psycholinguistics, corpus linguistics, linguistic typology, and computa-
tional linguistics are converging around a simple quantitative generalization about syntactic trees in natural language: 
that the linear distance between words linked in dependencies is usually short. Liu et al. [14, in this issue] provide 
a thorough and multifaceted review of this concept, which they term dependency distance minimization (DDM). In 
turn, DDM provides a rich interface between linguistics, graph theory, and complex systems theory.

Based on the work reviewed in Liu et al. [14], we believe that DDM is now firmly established as a first-order empir-
ical generalization about syntactic trees. This commentary will focus on possible theoretical and empirical directions 
extending the DDM idea to explain more phenomena in languages and human language processing.

1. Generalizing dependency locality

DDM is motivated by theories of human language processing difficulty based on memory constraints, but as Liu 
et al. [14] note, these theories only account for a subset of observed online processing difficulty. In fact, better pre-
dictive accuracy for online reaction times is achieved by an alternative theory, surprisal theory, which is based on 
probabilistic expectations rather than memory constraints. Surprisal theory holds that the online processing effort for 
a word in context is directly proportional to the information content (log inverse probability) of the word in context 
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[7,9,17]. There is a long history of evidence for surprisal effects in reaction times for naturalistic text, whereas such 
evidence for dependency locality effects has only been found recently, in texts that were edited to be difficult to under-
stand [16]. Nevertheless, while surprisal theory has good coverage, it cannot account for the well-attested dependency 
locality effects which motivate DDM as a typological principle.

In recent work, Futrell and Levy [4] introduce a unification of expectation-based and memory-based theories of 
online processing difficulty, which derives and generalizes dependency locality effects. This theory, called noisy-
context surprisal, repurposes a noisy-channel model of sentence comprehension [10,5] to predict online processing 
difficulty by combining it with surprisal. In this combined theory, the processing effort for current input is propor-
tional to the information content of that input given a noisy representation of that context [11], rather than a veridical 
representation of the preceding context, as was the case in previous surprisal models. Futrell and Levy [4] introduce 
the key additional hypothesis that the level of noise affecting the context representation is not uniform: rather, more 
distal context has higher noise levels than more proximal context. This increasing noise rate is motivated by the Data 
Processing Inequality: holding an element of context in memory requires continued processing of its representation, 
and the noise affecting a representation increases monotonically the more data processing is done on it [1].

Dependency locality effects emerge from a noisy-context surprisal model in a generalized form: processing diffi-
culty in this model occurs when word pairs with high mutual information (i.e., word pairs which predict each other) are 
distant in linear order. Under mild assumptions, the predicted processing effort for a word wi in context w1, ..., wi−1
is approximately:

C(wi |w1, ...,wi−1) ≈ log
1

p(wi)
−

i−1∑

j=1

f (i − j)pmi(wi;wj), (1)

where pmi(wi; wj) is the pointwise mutual information of wi and wj and f (d) is some monotonically decreasing 
probability mass function indicating the probability that a word of distance d remains unaffected by noise in the 
context representation. The generalization expressed by Equation (1) is information locality: for ease of processing, 
words that depend on each other statistically should be close to each other.

We can see dependency distance as an approximate metric of information locality if we assume further that syn-
tactic dependencies, as they are annotated in treebanks, identify those word pairs that have high mutual information. 
It is natural that words in syntactic dependencies would have high mutual information because mutual information is 
simply a quantification of generic dependence in a statistical sense. If we assume that the correct probability model 
for sentences has dependents generated conditional on their heads [2,8], then heads and dependents are exactly those 
word pairs with the highest mutual information [3]. The assumption that syntactic dependencies indicate high mutual 
information is also ubiquitous in NLP, and empirical evidence for this point is given in Futrell and Levy [4].

While dependency locality denotes processing difficulty when words in syntactic dependencies are distant, infor-
mation locality describes processing difficulty when a word is distant from any relevant contextual information that it 
must be integrated with. In empirical support of information locality, Futrell and Levy [4] show that words with high 
mutual information are usually close, and Gildea and Jaeger [6] show that word orders are optimized so that mutually 
predictive words appear within a 3-word window of each other. Li [12] and Lin and Tegmark [13] show a power-law 
decay of mutual information with distance for letters in natural language text. Information locality follows from a 
generalization of surprisal theory, which is a broad-coverage model of human sentence processing difficulty, so we 
believe it is promising as a principle of language processing and as a pressure affecting word order.

2. Prospects for information locality

While it remains to be shown that information locality can fully explain dependency locality effects, we believe 
information locality has the potential to explain detailed word order patterns. The primary prediction beyond DDM 
is that the strength of the DDM-based attraction between words should be modulated by their mutual information. 
This modulation might explain why, for instance, adjuncts are typically farther from their heads than arguments, if it 
is the case that adjuncts have lower mutual information with their heads. Adjective order preferences might also be 
amenable to this kind of analysis.

Noisy-context surprisal could also permit us to incorporate in a principled way the factors known to modulate 
dependency locality effects. Noisy-context surprisal holds that the memory representation of context is affected by 
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some noise, but the exact form of the noise function is unspecified: the derivation of information locality assumes 
only that the noise rate increases the longer a word representation has been in memory. This noise function could be 
specified to build in effects of primacy, recency, givenness, and intervening material, all of which are noted in Liu 
et al. [14] to modulate dependency locality effects. The corpus studies reported can also inform the form of the noise 
model: the generally power-law decay of dependency distance suggests that the survival probability function f in 
Equation (1) should have the form of a power law.

Even if dependency locality is a special case of information locality, we expect dependency distance will remain 
an important metric because of its simplicity. Estimating mutual information from linguistic observations is difficult 
because of the long tail of possible wordforms, whereas crosslinguistic dependency treebanks are becoming more and 
more common because of projects such as Universal Dependencies [15], and one needs only a modest sample size of 
dependency trees to demonstrate dependency distance minimization. DDM can also be easily formulated as a graph 
theoretic problem, making it easier to reason about.

The field of quantitative syntax is still just beginning, and DDM is one of its first strong quantitative generalizations, 
with a solid theoretical motivation coming from psycholinguistic models of incremental language processing. DDM 
joins the other known factors affecting quantitative word order patterns, such as animacy, definiteness, givenness, 
and frequency of words. Like DDM, these other factors all appear to be motivated by the principle of minimum 
effort, in that they involve placing easier and more accessible items earlier in a sequence (an “easy-first” preference 
in production). Thus, we believe that DDM, joining these other quantitative generalizations, will play a pivotal role in 
an eventual explanation of the form of human language in terms of optimal communication systems under human-like 
information processing constraints.
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