Parsing: Overview 465

adopt a syntactic analysis. However, the ultimate
goal of parsing is, of course, to determine the ap-
propriate interpretation that should be assigned to
a string of words and to integrate that interpret-
ation with discourse context and general know-
ledge. Thus, researchers have asked how people
use context to decide on the appropriate interpret-
ation for expressions — for example how people
interpret elliptical phrases, how they should inter-
pret a pronoun or other referring expression, and
so on. It is clear that theories of parsing need to be
fully integrated into more general accounts of lan-
guage comprehension. This is likely to be a major
focus of future research.

Further Reading

Altmann GTM (1998) Ambiguity in sentence processing.
Trends in Cognitive Sciences 2: 146-152.

Crocker MW (1999) In: Garrod S and Pickering M (eds)
Language Processing. Brighton and Cambridge, MA:
Psychology Press/MIT Press. [Covers basic
computational issues.]

Crocker MW, Pickering M] and Clifton C Jr (eds)
Architectures and Mechanisms for Language Processing.
Cambridge, UK: Cambridge University Press.

Frazier L and Rayner K (1982) Making and correcting
errors during sentence comprehension: eye movements
in the analysis of structurally ambiguous sentences.
Cognitive Psychology 14: 178-210.

Gibson E and Pearlmutter NJ (1998) Constraints on
sentence processing. Trends in Cognitive Sciences 2:
262-268.

Harley TA (2001) The Psychology of Language, 2nd edn,
chap 9. Hove, UK: Psychology Press.

Haberlandt K (1994) Methods in reading research. In:
Gernsbacher MA (ed.) Handbook of Psycholinguistics.
San Diego, CA: Academic Press.

Mitchell DC (1994) Sentence parsing. In: Gernsbacher
MA (ed.) Handbook of Psycholinguistics. San Diego, CA:
Academic Press.

Pickering MJ (1999) Sentence comprehension. In:
Garrod S and Pickering MJ (eds) Language Processing.
Brighton and Cambridge, MA: Psychology Press/MIT
Press.

Tanenhaus MK and Trueswell JC (1995) Sentence
comprehension. In: Miller] and Eimas P (eds) Speech,
Language, and Communication, vol. 11, pp. 217-262.
San Diego, CA: Academic Press.

Trueswell JC, Tanenhaus MK and Garnsey S (1994)
Semantic influences on parsing: use of thematic role
information in syntactic disambiguation. Journal of
Memory and Language 33: 283-318.

Parsing: Overview

Introductory article

Florian Wolf, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
Edward Gibson, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

CONTENTS
Introduction
Parsing strategies

Chart parsing
Summary

Parsing is the task of determining how the words
in a sentence combine to yield a structured repre-
sentation of the sentence meaning, given a
grammar.

INTRODUCTION

To understand a sentence, one has to determine
how the words in the sentence are combined to
arrive at a meaning for the sentence. Consider the
following examples:

a. The dog bites the man.
b. The man bites the dog. (1)

Sentences (1a) and (1b) have the same words. How-
ever, the words are combined differently, resulting
in two very different sentence meanings. The set of
rules governing how words are combined for a
given language is called a grammar of that lan-
guage. Sentences (la) and (1b) are acceptable Eng-
lish sentences, whereas the asterisk preceding
(2) indicates that this sentence is unacceptable.

466 Parsing: Overview

Sentences (1a) and (1b) follow the rules of English,
whereas sentence (2) does not.

*The dog man bites the. (2)

The task of parsing is to determine how the words
in a sentence combine to yield a structured repre-
sentation of the sentence meaning, given a gram-
mar. In contrast to a parser, a recognizer merely
determines whether a sentence is grammatically
correct or not, without producing a structured
representation for the input sentence. A further
contrast holds between parsers and generators.
Whereas a parser takes a sentence as input and
provides a representation of the meaning of the
sentence as output, a generator takes some represen-
tation of meaning as input and provides a sentence
as output.

This article discusses the process of parsing. The
process of parsing is not just retrieving a represen-
tation of the sentence’s meaning that is already
stored in memory. If that were so, we would not
be able to understand sentences that we have not
heard before. Furthermore, there are an infinite
number of possible sentences. Storing a representa-
tion of the meaning of each sentence in memory
would require infinite memory resources.

This article will give a basic introduction to some
parsing strategies that were developed in computa-
tional linguistics. It will also describe a method that
deals efficiently with local (or temporary) and global
ambiguity. Human languages are highly ambigu-
ous. For example, sentence (3) contains both local
and global ambiguity:

The man saw the woman on the hill with
the telescope. (3)

The word ‘saw’ is locally ambiguous. That is, with-
out disambiguating context, it could be either a tool
or the past tense form of the verb “see’. Sentence (3)
is also globally ambiguous. It has five different
readings, because the prepositional phrases (PPs) in
(3), “on the hill’ and “with the telescope’, can modify
either the noun phrase (NP) ‘the woman’ or the verb
phrase (VP) ‘saw the woman’. “With the telescope’
can also modify the NP ‘the hill’. One of these
readings would be equivalent to “The man used
the telescope in order to see the woman who was
on the hill’. Another possible reading would be
equivalent to ‘The man saw the woman who was
on the hill and who had a telescope’.

The number of readings of such ambiguities
grows exponentially with the number of modifying
phrases, PPs in this case. Such ambiguities are very
frequent in human languages, but they usually do
not present a problem to humans. This is in large

part because humans use their knowledge of the
world in order to rule out less likely possibilities as
they are processing sentences word by word. For
instance, humans usually do not get a reading of (3)
in which ‘with the telescope’ modifies ‘the hill’,
because without further context or assumptions
we assume that it is unlikely that hills have tele-
scopes.

PARSING STRATEGIES

The task in parsing is to discover how the words of
a sentence can combine, using the rules in the
grammar. A very simple grammar is presented in
Figure 1 (where S=sentence; NP =noun phrase;
VP =verb phrase; Det = determiner). The grammar
indicates that a sentence (S) expands to a noun
phrase (NP) and a verb phrase (VP), and that an
NP expands to a determiner (Det) and a Noun, etc.
We will refer to the symbol to the left of the arrow
as the left-hand side (LHS) of a rule, and the right
side of the arrow as the right-hand side (RHS) of a
rule. The first symbol of the RHS is called the left
corner of an RHS. The categories on the LHS of rules
are sometimes called nodes in the grammar. Nodes
that expand directly to a word (e.g. Det, Noun and
Verb) are called pre-terminals. Nodes that do not
expand directly to a word (e.g. S, NP and VP) are
called non-terminals.

Using a grammar like this (much more complex
in real applications), a parsing algorithm then es-
tablishes a syntactic structure for an input sentence.
One possible parsing strategy starts by looking at
the rules and seeing what input one can find that is
compatible with the rules. Such a strategy is called
top-down. Alternatively, one might start by looking
at the input, and seeing which rules in the grammar
apply to that input. This is a bottom-up strategy. Still
another possibility would be some combination of
top-down and bottom-up. The following sections
describe these different parsing strategies in more
detail.

The parsing algorithms described below process
a sentence one word at a time, from left to right,

S —» NPVP Det —» the

NP —» Det Noun | Noun —» man
VP —» Verb NP | Noun —» woman
Verb —» likes

Verb —» meets

Figure 1. A very simple grammar.

Parsing: Overview 467

similar to when people read or listen to language. A
stack data structure (last in, first out) is used by the
parser to keep track of the categories that the parser
still needs to process to obtain a complete sentence
structure. The parser also keeps a record of the
structure that it has built so far.

Notice that the grammar in Figure 1 is unam-
biguous. That is, each left-hand side node has
exactly one right-hand side. However, in more real-
istic grammars, this is not the case. Consider the
possible expansions of the category VP in Figure 2.
The first rule would be used for intransitive verbs
such as ‘walk’, as in ‘I walk’. The second rule would
be used for transitive verbs such as ‘like’, as in ‘I
like the apple’. The third rule would be used for
VPs that are modified by a prepositional phrase, for
example, ‘I see you with the telescope’. A parsing
algorithm can handle ambiguity either by trying
one choice at a time — a serial approach — or by
following multiple alternatives at once — a parallel
approach. Under a serial approach, the parser tries
one of the rules first and pursues the resulting
structure further, and backtracks and tries the
other rule(s) only if the first rule fails, or if the
goal is to find all possible parses. The ordering of
the rules in the grammar determines which rule is
applied first. Under a parallel approach, the parser
works on all alternative rules and further pursues
the resulting structures in parallel threads. A paral-
lel approach requires some data structure that con-
tains a set of parse trees, one tree for each
combination of rules.

Top-down Parsing

In top-down parsing, one starts with the assumption
that the input will eventually form a sentence. This
involves initially positing an S-node and all of
the extensions of the S-node specified by the gram-
mar (in our case, only S— NP VP). One keeps
expanding nodes, following the rules of the gram-
mar, until one finds some matching input. The
stack in a top-down parser keeps track of what
still needs to be found in order to get a sentence
that is well-formed according to the grammar.
The pseudocode in Figure 3 shows a top-down

VP —» Verb
VP —» Verb NP

VP —» VP PP

Figure 2. Some possible expansions of a VP.

FUNCTION top-down-parse (SENTENCE)
initialize STACK = [S]
DO
IF (top-element of STACK = non-terminal N) THEN
Selectarule N — AB
Pop N from STACK
Push A B onto STACK
Add A B below N in the structure for the input
ELSE IF (top-element of STACK = pre-terminal P) THEN
Find next word W in SENTENCE
IF (there is a rule P — W) THEN
Pop P from STACK
Add W below P in the structure for the input
ELSE
Fail.
ENDIF
ENDIF
UNTIL STACK = [] AND end of SENTENCE is reached.
RETURN PARSE-TREES

END top-down-parse

Figure 3. Pseudocode for top-down parser.

algorithm in a general form. Notice that in the
case of ambiguity, that is, if a left-hand side of a
rule has more than one possible right-hand side (cf.
Figure 2), the parser does not specify an order in
which these rules are applied. This is called non-
deterministic parsing.

In the following, we provide a step-by-step
example of how a top-down parser would parse
the sentence ‘The man likes the woman’, assuming
the grammar from Figure 1 (cf. Figure 4):

e Step 1: Push S onto the stack. Stack =[S]

e Step 2: Apply the rules that have S on their LHS. There
is only one such rule in our grammar, S— NP VP. Pop
S from the stack. Push NP and VP onto the stack.
Stack =[NP VP]

e Step 3: Apply the rules that have NP on their LHS.
Here, this is only NP — Det Noun. Pop NP from the
stack. Stack = [Det Noun VP]

e Step 4: Find ‘the’ in the input and incorporate it into the
parse tree. Pop Det from the stack. Stack = [Noun VP]

e Step 5: Find ‘man’ in the input and incorporate it into
the parse tree. Pop Noun from the stack. Stack =[VP]

e Step 6: Apply the rules that have VP on their LHS.
Here, this is only VP — Verb NP. Pop VP from the

468 Parsing: Overview
S
S
NP
NP
S
Det
the
Step 1| Step 2 Step 3 Step 4
: /S\
NP NP VP
/\
Det Noun D|6t Nloun
the man the man
Step 5 Step 6
: /S\
NP VP NP VP
/N
Dlet Nloun Vierb Det Noun Verb
the man likes the man likes
Step 7 Step 8
/S\ /S\

/N
Det Noun Verb D

the man likes the

Det Noun Verb Det Noun

the man likes the woman

NP VP

N\

Step 9

Step 10

Figure 4. Top-down parsing step-by-step.

stack. Push Verb and NP onto the stack. Stack =[Verb
NP]

e Step 7: Find ‘likes’ in the input and incorporate it into
the parse tree. Pop Verb from the stack. Stack = [NP]

e Step 8: Apply the rules that have NP on their LHS.
Here, this is only NP — Det Noun. Pop NP from the
stack. Push Det and Noun onto the stack. Stack = [Det
Noun]

e Step 9: Find ‘the” and incorporate it into the parse tree.
Pop Det from the stack. Stack = [Noun]

e Step 10: Find ‘woman’ in the input and incorporate it
into the parse tree. Pop Noun from the stack. Stack =]

One of the advantages of a top-down parser is
that it never tries to form a structure that will never
end up being an S, because it starts from S. One of
the disadvantages of a top-down parser is that it
can try to build trees that are inconsistent with the
input. This did not happen with our extremely
simplified grammar. However, if we also had a

rule like NP — Det Adj Noun (Adj = Adjective), the
parser could have predicted a structure that is
inconsistent with the input, one that contains an
Adjective.

Another problem with top-down algorithms is
left-recursion. A grammar is left-recursive if it has
some LHS that can be expanded through a series of
rules such that the left corner of one of these expan-
sions is the same LHS category. For example, if a
grammar has a rule VP — VP NP, the parser could
keep extending the left corner of its RHS, VP, and
get caught in an endless loop, as shown in Figure 5.

Bottom-up Parsing

Whereas top-down parsing starts with the rules,
bottom-up parsing first looks at the input and then
tries to find rules in the grammar that apply to the

Parsing: Overview 469

input. The stack in a bottom-up parser keeps track
of what has been found so far and what still has to
be integrated in a parse tree. The bottom-up parser
considered here consists of two basic steps — push-
ing categories on the stack that still need to be
integrated into the input structure (shift), and ap-
plying rules in the grammar to the categories on the
stack (reduce). This algorithm is therefore also
called shift-reduce parsing. The pseudocode in
Figure 6 shows a bottom-up shift-reduce algorithm
in a general form.

In the following, we provide a step-by-step
example of how a bottom-up shift-reduce parser
would parse the sentence ‘The man likes the
woman’, assuming the grammar from Figure 1
(cf. Figure 7):

e Step 1: Find ‘the” and its lexical category, Det. Push Det
onto the stack. Stack = [Det]

e Step 2: Find ‘man’ and its lexical category, Noun. Push
Noun onto the stack. Stack = [Noun Det]

VP NP

VP NP

Figure 5. Endless loop due to left-recursion in a
top-down algorithm.

FUNCTION bottom-up-parse (SENTENCE)

Initialize STACK =]
DO
Find next word W in SENTENCE
IF (there is a rule P —= W) THEN
Push P onto STACK
ENDIF

Dlet Nolun Det Noun
the | the man |the man | the man likes
Step1| Step 2 Step 3 Step 4

il

Det Noun W F Dlet Nolun

the man likes the [the man likes the woman
Step 5 Step 6

Det Noun Det Noun

Det Noun Verb Det Noun

the man I|kes the woman the man Ilkes the woman
Step 7 Step 8
NP VP
NP
Det Noun Verb Det Noun

the man likes

the woman

Step 9

/* shift */

Figure 7. Bottom-up parsing step-by-step.

IF (nodes on STACK = right-hand side of rule N —= A B) THEN /* reduce */

Pop from STACK
Push N onto STACK

Add N above A B in the structure for the input

ENDIF
UNTIL STACK =
RETURN PARSE-TREES
END bottom-up-parse

Figure 6. Pseudocode for bottom-up parser.

[S] AND end of SENTENCE is reached

470 Parsing: Overview

e Step 3: Apply the rule NP — Det Noun to top of stack.
Pop Det and Noun from the stack. Push NP onto the
stack. Stack =[NP]

e Step 4: Find ‘likes” and its lexical category, Verb. Push
Verb onto the stack. Stack = [Verb NP]

e Step 5: Find ‘the” and its lexical category, Det. Push Det
onto the stack. Stack =[Det Verb NP]

e Step 6: Find ‘woman’ and its lexical category, Noun.
Push Noun onto the stack. Stack = [Noun Det Verb NP]

e Step 7: Apply the rule NP — Det Noun to top of stack.
Pop Det and Noun from the stack. Push NP onto the
stack. Stack =[NP Verb NP]

e Step 8: Apply the rule VP — Verb NP to top of stack.
Pop Verb and NP from the stack. Push VP onto the
stack. Stack =[VP NP]

e Step 9: Apply the rule S— NP VP to top of stack. Pop
NP and VP from the stack. Push S onto the stack.
Stack =[S]

An advantage of bottom-up parsers is that they
do not predict parse trees that are inconsistent
with the input. Furthermore, unlike top-down
parsers, bottom-up parsers cannot get caught in an
endless loop if the grammar contains left-recursive

rules. A disadvantage of bottom-up parsers is that
they can generate structures that never result in
an S.

Left-corner Parsing

Left-corner parsing combines some elements from
both top-down and bottom-up parsing. In left-
corner parsing, only rules consistent with the
input are predicted. That is, a rule is only predicted
(top-down) if the current input (bottom-up)
matches the leftmost node (hence left-corner) of
the RHS of a rule. In left-corner parsing, a stack is
used to keep track of what input is still needed to
complete a predicted rule.

Left-corner parsing is particularly interesting
from a cognitive science point of view, because it
mirrors human performance in parsing more
closely than pure top-down or bottom-up parsers.
Consider the following sentences:

John’s brother’s dog’s tail fell off. 4)

Table 1. Performance of parsing algorithms and humans compared

Sentence structure

Left-branching Center-embedded Right-branching
Stack size, top-down unbounded unbounded bounded
Stack size, bottom-up bounded unbounded unbounded
Stack size, left-corner bounded unbounded bounded
Processing for humans easy hard easy

FUNCTION left-corner-parse (SENTENCE)

Initialize STACK = [S]
DO

Find next word W in SENTENCE
IF (there is a rule P— W) THEN

IF ((top-element of STACK = non-terminal N) AND (P = left-corner

of rule R—= A B)) THEN
Pop N from STACK
Push B onto STACK

ELSE IF ((STACK = []) AND (P = left-corner of rule R — A B)) THEN

Push B onto STACK
ENDIF
ELSE
Fail.
ENDIF

UNTIL STACK =[] AND end of SENTENCE is reached

RETURN PARSE-TREES
END left-corner-parse

Figure 8. Pseudocode for left-corner parser.

Parsing: Overview 471

The dog chased the cat that caught the

mouse that squeaked. (5)
The mouse that the cat that the dog chased
caught squeaked. (6)

Sentence (4) has a left-branching structure, (5) a
right-branching structure, and (6) a center-embedded
structure. Humans do not have difficulty under-
standing sentences with left-branching structures
like (4) or with right-branching structures like (5).
However, sentences with center-embedded struc-
tures like (6) are hard for humans to process, in
spite of the fact that (6) has virtually the same
meaning as (5). It is plausible that the difficulty in
center-embedded structures like (6) has to do with
the quantity of storage space that is required to
parse them. Table 1 shows a comparison between
the processing complexity, for humans, of different
structural types, and the storage space for different
parsing algorithms.

Table 1 shows that the stack size in a left-corner
parsing algorithm mirrors human performance,
but not in a top-down or a bottom-up algorithm.
Thus, left-corner parsing algorithms are more psy-
chologically plausible than top-down or bottom-up
parsing algorithms.

The pseudocode in Figure 8 shows a left-corner
algorithm in a general form.

Here is a step-by-step example parse of the sen-
tence ‘The man likes the woman’ (cf. Figure 9):

e Step 1: Find ‘the’ and its lexical category, Det.
Stack =[S5]

e Step 2: Apply the rule NP — Det Noun. Push Noun onto
the stack. Stack =[S Noun]

e Step 3: Find ‘man’ and its lexical category, Noun. Pop
Noun from the stack. Stack =[]

e Step 4: Apply the rule S— NP VP. Push VP onto the
stack. Stack =[VP]

e Step 5: Find ‘likes” and its lexical category, Verb. Pop
VP from the stack. Stack =[]

e Step 6: Apply the rule VP — Verb NP. Push NP onto the
stack. Stack = [NP]

e Step 7: Find ‘the’ and its lexical category, Det. Pop NP
from the stack. Stack =]

e Step 8: Apply the rule NP — Det Noun. Push Noun onto
the stack. Stack = [Noun]

e Step 9: Find ‘woman’ and its lexical category, Noun.
Pop Noun from the stack. Stack =[]

Head-corner Parsing

Head-corner parsing is a generalization of left-
corner parsing. In left-corner parsing, one looks
for the left-corner of the RHS of a rule to make
top-down predictions. In head-corner parsing, one
looks for the head of a rule. Roughly speaking, the

S S

NP NP NP NP vp
/\
D|9t D|Et Dlet Nolun Det Noun Det Noun Verb
the |the the man|the man the man likes

Step 1| Step 2 Step 3 Step 4 Step 5
S S
NP VP NP VP

w N[

Det Nolun Velrb Dle{

Dlet Nolun Velrb |

the man likes the man likes the
Step 6 Step 7
S S

NP/\VP NP/\VP
N\ /\ [e
Det N(l)un VTrb DI Iet Nloun Vlerb Dlet N(l)un

the man likes the

Step 8

the man likes the woman

Step 9

Figure 9. Left-corner parsing step-by-step.

head of a rule is the word at the semantic core of
that rule. For example, in the rule NP — Det Noun,
Noun is at the semantic core. Thus, Noun is the
head of NP. The idea behind looking at the head
of a rule first is that it contains a lot of useful infor-
mation (such as subcategorization, thematic roles,
etc.) which can allow for better top-down predic-
tions. For instance, the lexical entry for a verb,
which is the head of a VP, contains information
about what NPs or PPs are needed to form a com-
plete VP. As an example, consider the verb ‘like’. Its
lexical entry would contain the information that in
order to form a complete VP, it needs an NP that
denotes someone or something that is liked. These
additional items are called arquments.

Having such information about head—argument
relations available can improve the efficiency of
parsing languages such as Japanese or German,
whose word order is less constrained than that of
English. Consider sentence (7):

The man likes the woman. (7)
In German, this sentence might also be written as
The woman likes the man. (8)

meaning, ‘the man likes the woman’. The subject
and object NPs are distinguished by morphological
case marking in German. To be able to parse (7) as

472 Parsing: Overview

well as (8) correctly, a left-corner parsing algorithm
would need two sets of rules. There would have to
be one set of rules for (7) that includes S — NP VP
and VP — Verb NP. Another set of rules for (8)
would have to include S— VP NP and VP — NP
Verb. A head-corner parsing algorithm does not
require such a complex grammar. It is enough to

STRUCTURE EDGE {
CATEGORY
CHILDREN
LEFT-END
RIGHT-END
REQUIRED-CATEGORIES

}
FUNCTION chart-parse (SENTENCE)

have one set of rules that includes S— NP VP and
VP — Verb NP. Once a head-corner parser has
found the head of the VP, ‘likes’, it can look for
the argument of this head. This can be done bidir-
ectionally — left-to-right or right-to-left — so that
word order does not matter. The same applies to
the rule S— NP VP.

/* the top-level function */

initialize-chart SENTENCE, returning CHART-ACTIVES, CHART-INACTIVES,

PARSE-TREE

IF ((CHART-INACTIVES contains node S) AND (distance (left-corner (node S)
AND to right-corner (node S)) = length (SENTENCE))) THEN

RETURN PARSE-TREES
ENDIF
END chart-parse

FUNCTION initialize-chart (SENTENCE)
FOR (all words W in SENTENCE) DO

add-new-edge LEXICAL-ENTRY (W)

END

RETURN (PARSE-TREE, CHART-ACTIVES, CHART-INACTIVES)

END initialize-chart

FUNCTION add-new-edge (EDGE)
IF (EDGE = inactive) THEN
FOR (all CHART-ACTIVES) DO

fundamental-rule EDGE, CHART-ACTIVES

add EDGE to CHART-INACTIVES
add-null-active-edges EDGE
END
ELSE IF (EDGE = active) THEN
FOR (all CHART-INACTIVES) DO

fundamental rule EDGE, CHART-INACTIVES

add EDGE to CHART-ACTIVES
END
ENDIF
END add-new-edge

Parsing: Overview 473

FUNCTION fundamental-rule (ACTIVE-EDGE, INACTIVE-EDGE)

IF ((left-end of INACTIVE-EDGE matches right-end of ACTIVE-EDGE) AND

(INACTIVE-EDGE satisfies first category requirement of ACTIVE-EDGE))

THEN

NEW-EDGE = INACTIVE-EDGE incorporated in ACTIVE-EDGE

IF (NEW-EDGE = active) THEN

add NEW-EDGE to CHART-ACTIVES
ELSE IF (NEW-EDGE = inactive) THEN

add NEW-EDGE to CHART-INACTIVES

ENDIF
ENDIF

END fundamental-rule

FUNCTION add-null-active-edges (INACTIVE-EDGE)

FOR (each rule from GRAMMAR whose rhs is initiated by INACTIVE-EDGE) DO

NEW-ACTIVE-EDGE = rule in GRAMMAR with rhs initiated by INACTIVE-

EDGE

add-new-edge NEW-ACTIVE-EDGE

END
END add-null-active-edges

Figure 10. Pseudocode for chart parser.

CHART PARSING

As mentioned in the introduction, human lan-
guages are extremely ambiguous. The parsing
strategies discussed so far are very inefficient at
handling ambiguity, whether they use a serial ap-
proach or a parallel approach. Consider the
following sentence:

The tall man with brown hair saw the short
woman with blond hair. 9)

Remember that ‘saw’ is ambiguous between a
Noun-reading (a tool) and a Verb-reading (past
tense of ‘see’). This means that ‘the tall man with
brown hair” would have to be processed twice —
once for the Noun- and once for the Verb-reading —
although this segment gets the same structure in
both parses. In realistic large-scale applications
with big grammars, this can lead to efficiency prob-
lems that paralyse the whole application.

A way out of this situation is to give the parser a
memory. With a memory, the parser can keep a
record of all the parses it has attempted so far,
and look them up instead of reparsing them. In
parsing, such a memory is called chart. The chart

keeps a record of partially as well as completely
parsed rules from the grammar. In a chart, these
rules are called edges. Partially parsed edges are
called incomplete or active. Completely parsed
edges are called complete or inactive. Once an edge
is entered into the chart, it stays there. This is be-
cause we want to keep a record of all possible
parses of a sentence, to facilitate backtracking. The
following information about all edges (both active
and inactive) is contained in a chart:

the syntactic category of the edge, e.g. NP

where in the sentence the edge begins (the left end)
where in the sentence the edge ends (the right end)
pointers to further inactive edges, e.g. to Det Noun for
NP

e The following information is also included for active
edges: a list of what categories are still needed to
complete the active edge (to make it inactive).

A chart parser functions by combining active
edges with inactive edges via the Fundamental
Rule. The Fundamental Rule looks for matches be-
tween categories that are needed in an active edge
and the set of inactive (complete) edges. In order
to start a parse, one has to specify a top-down
or bottom-up strategy. This is accomplished by

474 Parsing: Overview

Oo\thej. man 2@ likes 3@ the “® womande

Det

Figure 11. Chart parsing, step 1.

NP /. Det Noun

0 the 1 man 2e likes 3@ the 4o woman e

Det

Figure 12. Chart parsing, step 2.

NP / the . Noun

NP /. Det Noun
O/

man Z2e likes 3@ the 4@ woman Se

Det

Figure 13. Chart parsing, step 3.

NP / . Det Noun

NP / the . Noun

likes 3@ the 4@ womanoe

NP / the man .

Figure 14. Chart parsing, step 4.

initializing the chart by adding either an empty
active edge for an S (top-down) or inactive edges
for the words in the sentence (bottom-up). The
algorithm presented in Figure 10 uses a bottom-
up strategy.

During the parse, when a match is found, a new
edge is constructed by adding the inactive edge to

o
>
o
p
—
n

NP /. Det Noun

likes 3@ the 4e woman Se

NP / the man .

Figure 15. Chart parsing, step 5.

S / the man . VP

NP /. Det Noun
S/.NPVP

likes 3@ the 4e womandSe

NP / the man .

Figure 16. Chart parsing, step 6.

the contents of the active edge. The original edges
are left in the chart to allow reanalysis. The edges in
the chart are labeled as follows:

[category]/[what is already there]. [what is
still needed|

Examples:

e S/NP. VP: category is S, an NP has been processed
already, a VP is still needed, so the edge is active.

e NP /Det Noun. : category is NP, a Det and a Noun have
already been processed, so the edge is inactive.

Active edges are printed above the words, inactive
edges below. Furthermore, there are solid circles
that denote stages of the parser.

Here is a step-by-step example, parsing the sen-
tence ‘The man likes the woman’ (cf. Figures 11-21;
to keep the figures legible, only the more important
edges are shown):

e Step 1: Find ‘the’ and its lexical category, Det. Push an
inactive edge, [Det / the .], onto chart-inactives. Chart-
actives =[], chart-inactives = [Det / the .]

e Step 2: Make null-active-edge, [NP/. Det Noun]. Chart-
actives = [NP/. Det Noun], chart-inactives = [Det / the .]

e Step 3: Apply Fundamental Rule to inactive edge,
[Det / the], and incorporate it into null-active-edge,

Parsing: Overview 475

[NP/. Det Noun]. Push active edge, [NP / the . Noun],
onto chart-actives. Chart-actives =[[NP / the . Noun]
[NP /. Det Noun]], chart-inactives = [Det / the .]

Step 4: Find ‘man’ and its lexical category, Noun. Push
an inactive edge, [Noun / man .], onto chart-inactives.
Apply Fundamental Rule to inactive edge, [Noun /
man .], and incorporate it into active edge, [NP/Det .
Noun]. Push inactive edge, [NP /Det Noun.], onto chart-
inactives. Chart-actives = [[NP / the . Noun] [NP/. Det
Noun]], chart-inactives =[[NP /the man .] [Noun /
man .] [Det / the .]]

Step 5: Make null-active-edge, [S/. NP VP]. Chart-
actives=[[S/. NP VP] [NP /the . Noun] [NP/. Det
Noun]], chart-inactives =[[NP /the man .] [Noun/
man .] [Det / the .]]

Step 6: Apply Fundamental Rule to inactive edge,
[NP / the man .], and incorporate it into active edge,
[S/. NP VP]. Push active edge, [S / the man . VP], onto
chart-actives. Chart-actives =[[S / the man. VP] [S/.
NP VP][NP / the . Noun] [NP/. Det Noun]], chart-inac-
tives = [[NP / the man .] [Noun / man .] [Det / the .]]
Step 7: Find ‘likes” and its lexical category, Verb. Push
an inactive edge, [Verb / likes .], onto chart-inactives.
Chart-actives =[[S / the man . VP] [S/. NP VP] [NP /
the . Noun] [NP/. Det Noun]], chart-inactives = [[Verb /
likes .] [NP / the man .] [Noun / man .] [Det / the .]]
Step 8: Make null-active-edge, [VP/. Verb NP]. Chart-
actives=[[VP/. Verb NP] [S/the man . VP] [S/. NP
VP] [NP / the . Noun] [NP/. Det Noun]], chart-inacti-
ves =[[Verb / likes .] [NP / the man .] [Noun / man .]
[Det / the .]]

Step 9: Apply Fundamental Rule to inactive edge,
[Verb /likes .], and incorporate it into active edge,
[VP/. Verb NP]. Push active edge, [VP /likes . NP],
onto chart-actives. Chart-actives =[[VP /likes . NP]
[VP/. Verb NP] [S / the man . VP] [S/. NP VP] [NP /
the . Noun] [NP /. Det Noun]], chart-inactives = [[Verb /
likes .] [NP / the man .] [Noun / man .] [Det / the .]]
Step 10: Parse NP ‘the woman’, similar to NP ‘the man’
(cf. steps 1-4). Chart-actives = [[NP / the . Noun] [NP/.
Det Noun] [VP /likes . NP] [VP/. Verb NP] [S / the
man . VP] [S/. NP VP] [NP /the . Noun] [NP/. Det
Noun]], chart-inactives = [[NP / the woman .] [Noun /
woman .] [Det / the .] [Verb /likes .] [NP / the man .]
[Noun / man .] [Det / the .]]

Step 11: Apply Fundamental Rule to inactive edge,
[NP / the woman .], and incorporate it into active
edge, [VP / likes . NP]. Push inactive edge, [VP / likes
the woman .], onto chart-inactives. Apply Fundamen-
tal Rule to inactive edge, [VP / likes the woman .], and
incorporate it into active edge, [S / the man . VP]. Push
inactive edge, [S / the man likes the woman .], onto
chart-inactives. Chart-actives=[[NP /the . Noun]
[NP/. Det Noun] [VP / likes . NP] [VP/. Verb NP] [S /
the man . VP] [S/. NP VP] [NP / the . Noun] [NP /. Det
Nounl]], chart-inactives=[[S/the man likes the
woman .] [VP / likes the woman .] [NP / the woman .]
[Noun / woman .] [Det / the .] [Verb / likes .] [NP / the
man .] [Noun / man .] [Det / the .]]

S / the man . VP

S/.NPVP

NP /. Det Noun

NP / the man .

Figure 17. Chart parsing, step 7.

S / the man . VP

NP /. Det Noun
S/ .NPVP

————) VP/.Verb NP

NP / the man .

Figure 18. Chart parsing, step 8.

S / the man . VP

S/.NPVP

NP /. Det Noun

VP / likes . NP

S —— VP /. Verb NP

NP / the man .

Figure 19. Chart parsing, step 9.

the 4e womanSe

the 4@ womanSe

the 4® womanSe

476 Parsing: Overview

S / the man . VP

NP /. Det Noun

S/ .NPVP

NP /. Det Noun

VP / likes . NP

NP / the . Noun

N~ —— VP/.Verb NP

NP / the woman .

NP / the man .

Figure 20. Chart parsing, step 10.

S / the man . VP
NP /. Det Noun

NP / . Det Noun
S/.NPVP

VP / likes . NP

NP / the . Noun

~ ——) VP/.Verb NP

NP / the man . NP / the woman .

VP / likes the woman .

S / the man likes the woman .

Figure 21. Chart parsing, step 11.

SUMMARY

Parsing — determining the structure of a sentence,
given a grammar —is a crucial aspect of establishing
meaning in language processing. There are two
basic sets of constraints in parsing. One set of con-
straints is top-down: the rules in the grammar

constrain which structures sentences can have in a
given language. The other set of constraints is
bottom-up: the input sentence to the algorithm
constrains which rules from the grammar can
apply. Parsing algorithms differ with respect to the
constraints they use more prominently: bottom-up,
top-down, or a combination of both (left- and head-
corner).

An important issue in parsing is efficiently deal-
ing with structural and lexical ambiguities. In an
ambiguity, if the later disconfirmed alternative
reading is pursued initially, a standard parser has
to backtrack and re-parse parts of the input sen-
tence. Re-parsing can be avoided by using a chart, a
data structure that stores partially parsed input, so
that it can be looked up during backtracking.

Further Reading

Abney SP and Johnson M (1991) Memory requirements
and local ambiguities of parsing strategies. Journal of
Psycholinguistic Research 20(30): 233-250.

Aho AV and Ullman JD (1972) The Theory of Parsing,
Translation, and Compiling, vol. 1: Parsing. Englewood
Cliffs, NJ: Prentice-Hall.

Crocker M (1999) Mechanisms for sentence processing.
In: Garrod SC and Pickering M (eds) Language
Processing. London, UK: Psychology Press.

Dowty D, Karttunen L and Zwicky A (eds) (1985) Natural
Language Processing: Psychological, Computational and
Theoretical Perspectives. Cambridge, UK: Cambridge
University Press.

Grosz BJ, Jones KS and Webber BL (eds) (1986) Readings
in Natural Language Processing. Los Altos, CA: Morgan
Kaufmann.

Jurafsky D and Martin JH (2000) Speech and Language
Processing: An Introduction to Natural Language
Processing, Speech Recognition, and Computational
Linguistics. Upper Saddle River, NJ: Prentice-Hall.

Manning CD and Schiitze H (1999) Foundations of
Statistical Natural Language Processing. Cambridge,
MA: MIT Press.

Pereira F and Shieber SM (1987) Prolog and Natural
Language Analysis. Cambridge, UK: Cambridge
University Press.

