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Abstract

Recovering discrete words from continuous speech is one of the first challenges facing language learners. Infants and adults
can make use of the statistical structure of utterances to learn the forms of words from unsegmented input, suggesting that
this ability may be useful for bootstrapping language-specific cues to segmentation. It is unknown, however, whether
performance shown in small-scale laboratory demonstrations of ‘‘statistical learning’’ can scale up to allow learning of the
lexicons of natural languages, which are orders of magnitude larger. Artificial language experiments with adults can be used
to test whether the mechanisms of statistical learning are in principle scalable to larger lexicons. We report data from a
large-scale learning experiment that demonstrates that adults can learn words from unsegmented input in much larger
languages than previously documented and that they retain the words they learn for years. These results suggest that
statistical word segmentation could be scalable to the challenges of lexical acquisition in natural language learning.
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Introduction

Spoken speech is a continuous acoustic waveform without

consistent breaks at the boundaries between words. Although

acoustic, phonetic, and prosodic features give partial evidence for

where words begin and end, these cues vary widely between

languages [1]. One source of information that is consistent across

languages, however, is the statistical structure of the utterance itself

[2]. Because utterances are generated by combining words from a

finite lexicon, some sound sequences will be much more likely to

appear than others. Hence, a learner can in principle work

backwards from the distribution of sound sequences in a corpus of

utterances to make an informed guess about the generating

lexicon.

A variety of computational systems are now able to recover

word boundaries with relative accuracy from an unsegmented

corpus [3,4], and laboratory experiments show that–at least under

certain conditions–human learners can do the same thing. These

experimental demonstrations (often referred to as ‘‘statistical

learning’’ experiments) have used artificial languages with no

prosody to show that both infants and adults are able to use the

distribution of sound sequences to extract words from continuous

speech [5,6]. In a typical statistical learning experiment, infants or

adults listen to a stream of unsegmented speech, generated by

randomly concatenating words from a language containing 4–6

different word forms. After a very short exposure–sometimes as

little as 2 minutes–listeners are then able to distinguish frequent

sequences from less frequent distractors [5]. Infants in this type of

experiment can even distinguish between strings that are matched

for overall frequency but vary in their statistical coherence on

measures like transitional probability (the probability of one

syllable given the observation of another) [7].

What is the role that this kind of statistical learning plays in

children’s language acquisition? Some authors have suggested that

it is an important part of the broader process of language

acquisition [8–10], but others have questioned whether perfor-

mance shown in short lab studies can scale up to the challenges of

lexical acquisition [11–13]. In particular, it is unknown whether a

mechanism that has only been demonstrated to operate over

highly restricted artificial languages with homogeneous lexicons

can nevertheless be applied successfully to the complex and

heterogeneous lexicons of natural languages.

Recent work has found that learners can map meanings to the

outputs of statistical segmentation tasks [14–16] and that statistical

learning effects can be found using natural language stimuli

[17,18]. In addition, statistical learning effects are robust to

variation in word and sentence lengths [19] and to Zipfian

frequency distributions (the ‘‘heavy-tailed’’ distributions that are

ubiquitous in natural languages, in which a few words appear with

very high frequency while many others appear much more rarely

[20]). But although the results of these tests have been positive,

they do not fully address concerns regarding whether statistical

learning can scale to larger languages and longer retention

intervals, because they still use small-scale experimental tasks.

The goal of the current study is to address this concern about

the scalability of statistical learning. We used adult learners to

address this question, for two reasons. First, statistical learning

abilities generally appear to be conserved across development

[5,6,21], making adults a viable population for studying these

abilities using large-scale and psychophysical paradigms not suited
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for infants and children. Second, although children learning new

languages eventually reach higher levels of performance on

complex syntactic and morphological regularities [22], they do

not learn words faster or better than adults. In fact, memory for

new lexical items increases considerably across development

[23,24], consistent with the increasing rate of vocabulary growth

over the course of language acquisition [25,26] and with general

processes of maturation [27]. Our previous work has suggested

that the major bottleneck in statistical learning tasks is memory for

individual lexical items [19]. Thus, if adults are unable to learn

words from a particular language via statistical learning, this

failure should place an upper bound on children’s abilities as well.

Nevertheless, we note that a success by adults in learning a scaled-

up language does not imply that statistical learning is used by

children–only that negative arguments regarding scalability are

invalid. Our current study was designed to evaluate these negative

arguments.

In our study, four individuals listened to large corpora of

synthesized speech, each over the course of a continuous ten-day

period. Each participant listened for an hour a day on their iPod

while they exercised, commuted to work, or relaxed, with the

constraint that they did not read, speak, or otherwise use language

during listening. The unique language that each participant heard

was comprised of 1000 different words, which had the character-

istic Zipfian frequency distribution of natural language, such that a

few words were highly frequent while most others appeared only

occasionally. The lengths of words and sentences were Poisson

distributed, also as in natural language. Words were concatenated

randomly without immediate repetitions so there was no syntactic

structure available, but all sentences had a minimum of two words

and a mean of four. Each of these factors has been studied in

isolation [19,20]; our intention here was to combine them on a

much larger scale than previously attempted.

Because we wanted to test the scalability of statistical learning

mechanisms, we chose to stay close in our paradigm to the original

artificial language design pioneered by Saffran and colleagues [6],

rather than adding additional cues like prosody [28]. In addition,

because of the scope of our project, the use of natural language

stimuli (as in [18]) would have been quite difficult. As a

consequence, the only information that was present in our

language but not in the initial experiments came from the

boundaries between utterances. Although utterance boundaries

are not necessary for learning (as shown by [6]), they are a

pervasive feature of natural language, and our own previous data

show that they facilitate segmentation performance [19]. Different

accounts of segmentation treat utterance boundaries differently:

while some treat them as merely another aspect of distributional

structure (e.g., [3]), others have given them special status (e.g.,

[29]). For our purposes here we include these boundaries but note

that they likely serve to make our languages easier to learn–though

also more natural–than they would have been otherwise.

Materials and Methods

In order to obtain a group of participants who would have a

commitment to this relatively demanding experiment, we recruit-

ed from the population of research assistants in the MIT Brain and

Cognitive Sciences Department. All participants gave written

consent to participate in this research, and the details of this

consent procedure were approved by the MIT Committee on the

Use of Humans as Experimental Subjects. The final sample for the

learning study consisted of four naı̈ve members of the Brain and

Cognitive Sciences community (1 MIT undergraduate, 1 student

at another local institution, and 2 employees). They were matched

with four yoked control participants. After three years, three of the

four participants in the experimental condition were located for

followup testing. One additional participant (a fifth) was excluded

for using an explicit strategy during the initial test phase (placing a

segment boundary every two syllables without variation through-

out the entire test, rendering the initial test data uninterpretable).

A unique artificial language was generated for each participant.

Each language had 1000 word types and 60,000 word tokens (for

*10 hours of speech). Frequencies of words were distributed via a

Zipfian frequency distribution: f (x)!1=r(x), where f (x) is the

frequency of word x and r(x) is its rank, such that there were a few

highly frequent words and many more with lower frequencies

(max =*8000, min = 10 tokens) [30]. Word lengths (in syllables)

were generated by drawing from a Poisson distribution with mean

2 and adding 1 to avoid lengths of zero (mean = 3). The length and

frequency of individual words were chosen independently: There

was no bias to choose short words to be the highest frequency

words in a language.

Words were created by combining 24 consonants and 14 vowels

into 336 CV syllables and concatenating randomly. Sentences

were then created by randomly concatenating words according to

the frequency distribution of word types, with no word repeated

immediately after itself (as in the initial work on statistical learning,

which imposed this constraint to avoid the extra salience given by

immediate repetitions [5,6]). Following our previous work [19,20],

we synthesized our languages as a sequence of sentences.

Sentences were distinguished from one another via a short but

highly perceptible (200 ms) silence between them. Sentence

lengths (in words) were generated by drawing from a Poisson

with mean 2 and adding 2 to avoid sentences of length 1; the mean

sentence length was 4 words (hence, 12 syllables).

Each training sentence was synthesized with no prosodic

variations and no word boundaries using the MBROLA speech

synthesis package with the us3 diphone database, with a duration

of 250 ms per syllable and a constant F0 of 100 Hz [31]. The

synthesizer was provided with unsegmented sequences and hence

produced no temporal or coarticulation boundaries to distinguish

between word-internal syllable transitions and word boundaries.

Test materials were synthesized with the same settings.

Materials were generated as a series of 5 minute WAV files and

loaded directly onto participants’ personal iPod music players.

Participants then listened to their language over headphones for

approximately one hour each day over 10 days. They were

instructed that they did not need to pay attention while listening

but could not read, talk, or otherwise use language during the

experiment; instead they were encouraged to listen while

exercising or walking from place to place. To improve compliance,

participants kept journals of listening activity; responses varied but

the modal activities during listening were transportation and

exercise.

Because two-alternative forced choice (2 AFC) trials impart

information to participants about what the correct answers are

(e.g. one of the two possibilities), it is not possible to conduct

multiple testing sessions using a 2 AFC paradigm. To probe

performance immediately after training [20,32], we used an

orthographic segmentation paradigm that tested participants’

performance in making explicit word segmentation decisions In

the first interim test session (‘‘immediate test’’), which occurred the

day after they finished listening (the 11th day of the experiment),

participants were tested on their ability to segment 400 tokens

(*100 novel sentences). Orthographically glossed sentences–

sentences written out as a string of syllables, as in ‘‘go lah bu pa

doh ti’’–were presented on a computer screen; participants were

instructed to listen to the sentence as many times as they wanted
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and to click between syllables where they thought there was a

break between words. Each of the four yoked control participants

completed the same initial test as one participant in the study, but

without completing the training session.

The second interim test (‘‘1–2 month test’’) was identical to the

first and was administered after one month (3 participants) or 2

months (1 participant, labeled LB in Figures 1 and 3). Participants

had no further exposure to the corpus after the initial 10 day

training session.

To provide measures comparable to those collected in previous

work on statistical learning, the final test was a 2 AFC,

administered approximately 3 years after the initial testing session

(36–37 months). Participants listened to 64 MP3 files of pairs of

words, synthesized as above. They were informed that one word

was from the lexicon of the language they had initially heard

during training, and that their job was to choose that word. Target

words were sampled uniformly across the log frequency range

spanned by the training sample, but all words above frequency

1000 were tested. Distractors were frequency-matched words from

the lexicon of another participants’ language (and contained

syllables that were present in both languages). In order to avoid

incentives for explicit study, participants were not notified that

there would be a second interim test or a final test until several

days beforehand, when they were contacted for scheduling.

Results

All participants were able to segment novel sentences into their

component words. Following the methods commonly used to

evaluate computational studies of segmentation [3,33], we

compared participants’ responses to the correct segmentation

and computed precision, recall, and F-score. Precision and recall are

signal detection-based measures that allow a set of responses to be

evaluated independently from the decision threshold that is used.

In our study, a ‘‘hit’’ was when a participant marked a boundary at

a location where one existed, a ‘‘miss’’ was when a boundary was

not marked by the participant, and a ‘‘false alarm’’ was when the

participant marked a boundary in a location where there was not

one. Precision was defined as hits/(hits+false alarms): the

proportion of reported segmentation decisions that were correct.

Recall was defined as hits/(hits+misses): the proportion of all

correct segmentation decisions that were reported by the

participants. It is common in the literature on computational

linguistics to combine these two numbers for easy comparison by

taking their harmonic mean, giving an F-score, a single number

that is easily compared across conditions. Figure 1 shows these

measures, both immediately after exposure and in a surprise 1–2

month followup test session.

Performance was relatively high, with F-scores generally above

.5 and precision and recall relatively close to one another.

Precision was higher than recall in all cases, suggesting that

participants placed fewer boundaries than was appropriate, but

that the boundaries they did place were accurate (in some cases

over 80% correct). In addition, performance increased slightly

from the first test to the 1–2 month followup. Although our small

sample precludes making any inferences on the basis of this

numerical increase, it could be due to a potential memory

consolidation effect [34]. Alternatively, participants might have re-

encoded the training materials during and after the first testing

session, due to their presentation in the visual modality. In any

case, we observed no decline in performance over the delay.

To create chance baselines for the F-score measure, we

randomly permuted participants’ own segmentation decisions.

We created 10,000 simulated segmentations of each sentence for

each participant: we took their initial segmentation of the sentence

and shuffled the positions of the boundaries while keeping the

number of boundaries constant. We then computed F-scores for

each of these random segmentations and empirical 95% confi-

dence intervals on these permuted F-scores. Using these baselines,

we found that both immediately and 1–2 months later, partici-

pants performed considerably above chance (empirical pv:0001).

This result suggests that participants learned and retained the

forms of the words and were able to apply this knowledge to make

sensible decisions about how to segment speech in the language. In

addition, because the baselines randomize individual participants’

decisions within each sentence, they ensure that participants’

accuracy was not due to guessing based on assumptions about the

distribution of word lengths (as opposed to actual knowledge of

word forms).

Performance was also well above the performance of the yoked

controls, who received testing but no training. Although some of

the yoked controls’ performance was higher than baseline, even

the most successful was still well below the performance of the least

successful trained participant. This result suggests that perfor-

mance in the initial segmentation task was not due to learning only

the most frequent words (those that could be learned during the

test session alone).

Further evidence that participants gained partial knowledge of

many words–rather than learning just a few high frequency

words–comes from an analysis of participants’ boundary decisions

at individual locations in sentences (Figure 2). We examined each

decision on the basis of whether there was actually a word

boundary at that location. Most words were longer than two

syllables, so over all possible locations, more fell within words than

between words. (If all words were two syllables, every other

location would be a boundary, but since some words were three,

four, or more syllables long, there were fewer boundaries than

word-internal locations). Because participants were likely sensitive

to this fact, there were more instances of correct rejections at

word-internal locations, and overall performance on word-internal

locations was higher than performance in finding boundaries.

To analyze the effects of frequency on segmentation perfor-

mance, we classified decisions by the frequency of the word about

Figure 1. Results of the interim tests. Bars show F-scores (the
harmonic mean of precision and recall) for the immediate and 1–2
month test sessions, along with permuted baseline and yoked control
scores. Blue and red lines give precision and recall scores respectively
for each participant and condition (means for permuted baseline). Error
bars show 95% confidence intervals.
doi:10.1371/journal.pone.0052500.g001
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which the decision was being made. For boundary locations, we

used the higher frequency of the two words adjacent to the

boundary. Overall, we saw a strong relationship between word

frequency and segmentation performance. A linear mixed-effects

model [35] confirmed this conclusion, finding effects of log

frequency (b~:34, pv:001), boundary presence (b~2:51,

pv:0001), and their interaction (b~:25, p~:001). The formula

used was corr.seg*log(freq)* bound+(log(freq) * bound | subject),

where corr.seg was an indicator variable for a correct segmenta-

tion decision, bound was an indicator variable for whether a

boundary was present, and log(freq) was the natural logarithm of

word frequency, described above. Significance was computed via

the z-approximation due to the large number of observations and

the relatively small anti-conservativity of this approach when a

maximal random effects structure is used [36].

Three years after the initial experiment, we located three of four

participants and administered a surprise test, asking them to

distinguish words from novel length-matched distractors. A logistic

mixed-effects model showed a highly significant effect of log

frequency on performance (b~1:33, pv:0001), congruent with

previous work on Zipfian frequency distributions showing that

word frequency was the strongest predictor of accuracy at test

[20]. Overall, while there was no evidence for retention of low-

frequency words, retention of the high-frequency words was close

to perfect despite the long period between training and test

(Figure 3).

Discussion

Our experiment was designed to test whether the abilities

demonstrated in ‘‘statistical learning’’ tasks can be applied to large-

scale lexicons. The evidence presented here suggests that they can.

After ten days of exposure, learners acquired partial knowledge

about many words in a massive artificial language, and retained

the most frequent words across a three-year delay.

How does the scale of our experiment compare to natural

language learning? Children hear *250,000–1,000,000 word

tokens per month, for a total of *3–12 million words by their first

birthday. If these tokens are produced in a Zipfian distribution

over 20,000–60,000 word types, then the most frequent word will

then be heard around 250,000–3,000,000 times, and the

hundredth most frequent will still be heard several thousand

times. (Sources for these figures: Hart and Risley [37] give an input

range of 10–35 million words by age 3. The Human Speechome

Corpus [38] contains approximately 16 million words in 15

months, for *1 million words per month, again 36 million words

by age 3. Average English vocabulary is around 60,000 words

[39], though this may be significantly limited in child-directed

Figure 2. Probability of making a correct segmentation decision at a particular location in a sentence, plotted by whether there was
a boundary at that location. Results are averaged across participants, and binned by the logarithm of the highest frequency word at the
boundary (e.g., at the boundary between two words, the higher of the two word frequencies). Points show means, intervals show binomial 95%
confidence intervals with a non-informative Beta prior, and lines show a loess smoother.
doi:10.1371/journal.pone.0052500.g002

Figure 3. Percent correct performance on a set of 2 AFC test
trials administered three years after training. Dots show
individual participants’ performance in one frequency range and are
jittered slightly on the horizontal to avoid overplotting. Lines show best
fitting half-logit regression models for individual participants.
doi:10.1371/journal.pone.0052500.g003

Learning and Retaining Large Artificial Languages

PLOS ONE | www.plosone.org 4 January 2013 | Volume 8 | Issue 1 | e52500



speech.) Thus our data provide an in-principle demonstration that

ambiguous contexts can lead to learning within both a frequency

range and a retention interval comparable to natural language

learning. Nevertheless, developmental experiments will be neces-

sary to test whether statistical learning is a viable route to large-

scale word learning for infants and children.

Exposure frequency (the number of times a string of sounds was

heard) was the primary determinant of retention in our data.

Previous work on word segmentation has suggested that learners

succeed in statistical learning tasks by computing transitional

probabilities (the probability P(BDA) that some syllable B follows

syllable A [5,6]). Nevertheless the experimental data from

statistical learning experiments are consistent with many possible

psychological mechanisms, not just the transition probability

computation [19,20,40]. One class of ‘‘chunking’’ models relies on

memory mechanisms to extract and retain an internally-consistent

segmentation of the input into frequent chunks [3,41,42].

Chunking models that have interference effects or parsimony

biases could provide a good explanation for the frequency

dependence of learners’ performance, while also capturing

transitional probability effects. Thus, ‘‘frequency or transitional

probability’’ may be the wrong question. Instead, future research

should investigate proposed mechanisms that capture both

smaller-scale transitional probability effects and large-scale

frequency dependence.

Although our experiments were not directly designed to test the

connection between memory mechanisms and statistical learning,

there are nevertheless similarities between our results and several

studies of language learning and long-term memory. First, the

dependence of performance on log word frequency parallels the

relationship found by Anderson [43] and others. Second, the scale

of learning is consistent with previous work on long-term lexical

memory [44]. Third, many models of language learning assume

that only the highest-frequency forms are retained and used for

inferences [45,46]. Finally, although comparable studies have not

been performed, children’s retention of novel word forms and

meanings over intervals of weeks or months has been well-

documented [47,48].

Despite limited experimental evidence, the utility of exposure to

language input without direct interaction–via television, radio,

podcast, or overheard speech–is widely debated in informal

discussions of second language learning. Our results show that for

adults, this kind of exposure can promote the long-term retention

of high-frequency, statistically-coherent chunks of language, albeit

without any links to meaning. This kind of exposure may create a

baseline competence for future comprehension in meaningful

settings, useful both for prelinguistic infants who hear large

amounts of speech before they begin producing or comprehending

language and for adults learning to parse an unfamiliar language.
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